Efficient Biased Sampling for Approximate Clustering and Outlier Detection in Large Data Sets
نویسندگان
چکیده
We investigate the use of biased sampling according to the density of the data set to speed up the operation of general data mining tasks, such as clustering and outlier detection in large multidimensional data sets. In density-biased sampling, the probability that a given point will be included in the sample depends on the local density of the data set. We propose a general technique for density-biased sampling that can factor in user requirements to sample for properties of interest and can be tuned for specific data mining tasks. This allows great flexibility and improved accuracy of the results over simple random sampling. We describe our approach in detail, we analytically evaluate it, and show how it can be optimized for approximate clustering and outlier detection. Finally, we present a thorough experimental evaluation of the proposed method, applying density-biased sampling on real and synthetic data sets, and employing clustering and outlier detection algorithms, thus highlighting the utility of our approach.
منابع مشابه
An Efficient Approximation Scheme for Data Mining Tasks
We investigate the use of biased sampling according to the density of the dataset, to speed up the operation of general data mining tasks, such as clustering and outlier detection in large multidimensional datasets. In densitybiased sampling, the probability that a given point will be included in the sample depends on the local density of the dataset. We propose a general technique for density-...
متن کاملClustering Methods For Spatial Datamining
Abstra t We investigate the use of biased sampling a ording to the density of the dataset, to speed up the operation of general data mining tasks, su h as lustering and outlier dete tion in large multidimensional datasets. In density-biased sampling, the probability that a given point will be in luded in the sample depends on the lo al density of the dataset. We propose a general te hnique for ...
متن کاملApplication of Recursive Least Squares to Efficient Blunder Detection in Linear Models
In many geodetic applications a large number of observations are being measured to estimate the unknown parameters. The unbiasedness property of the estimated parameters is only ensured if there is no bias (e.g. systematic effect) or falsifying observations, which are also known as outliers. One of the most important steps towards obtaining a coherent analysis for the parameter estimation is th...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Knowl. Data Eng.
دوره 15 شماره
صفحات -
تاریخ انتشار 2003